Podcasts by Category

Brain Inspired

Brain Inspired

Paul Middlebrooks

Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.

205 - BI 187: COSYNE 2024 Neuro-AI Panel
0:00 / 0:00
1x
  • 205 - BI 187: COSYNE 2024 Neuro-AI Panel

    Support the show to get full episodes and join the Discord community. Recently I was invited to moderate a panel at the annual Computational and Systems Neuroscience, or COSYNE, conference. This year was the 20th anniversary of COSYNE, and we were in Lisbon Porturgal. The panel goal was to discuss the relationship between neuroscience and AI. The panelists were Tony Zador, Alex Pouget, Blaise Aguera y Arcas, Kim Stachenfeld, Jonathan Pillow, and Eva Dyer. And I'll let them introduce themselves soon. Two of the panelists, Tony and Alex, co-founded COSYNE those 20 years ago, and they continue to have different views about the neuro-AI relationship. Tony has been on the podcast before and will return soon, and I'll also have Kim Stachenfeld on in a couple episodes. I think this was a fun discussion, and I hope you enjoy it. There's plenty of back and forth, a wide range of opinions, and some criticism from one of the audience questioners. This is an edited audio version, to remove long dead space and such. There's about 30 minutes of just panel, then the panel starts fielding questions from the audience. COSYNE.

    Sat, 20 Apr 2024 - 1h 03min
  • 204 - BI 186 Mazviita Chirimuuta: The Brain Abstracted

    Support the show to get full episodes and join the Discord community. Mazviita Chirimuuta is a philosopher at the University of Edinburgh. Today we discuss topics from her new book, The Brain Abstracted: Simplification in the History and Philosophy of Neuroscience. She largely argues that when we try to understand something complex, like the brain, using models, and math, and analogies, for example - we should keep in mind these are all ways of simplifying and abstracting away details to give us something we actually can understand. And, when we do science, every tool we use and perspective we bring, every way we try to attack a problem, these are all both necessary to do the science and limit the interpretation we can claim from our results. She does all this and more by exploring many topics in neuroscience and philosophy throughout the book, many of which we discuss today. Mazviita's University of Edinburgh page. The Brain Abstracted: Simplification in the History and Philosophy of Neuroscience. Previous Brain Inspired episodes: BI 072 Mazviita Chirimuuta: Understanding, Prediction, and Reality BI 114 Mark Sprevak and Mazviita Chirimuuta: Computation and the Mind 0:00 - Intro 5:28 - Neuroscience to philosophy 13:39 - Big themes of the book 27:44 - Simplifying by mathematics 32:19 - Simplifying by reduction 42:55 - Simplification by analogy 46:33 - Technology precedes science 55:04 - Theory, technology, and understanding 58:04 - Cross-disciplinary progress 58:45 - Complex vs. simple(r) systems 1:08:07 - Is science bound to study stability? 1:13:20 - 4E for philosophy but not neuroscience? 1:28:50 - ANNs as models 1:38:38 - Study of mind

    Mon, 25 Mar 2024 - 1h 43min
  • 203 - BI 185 Eric Yttri: Orchestrating Behavior

    Support the show to get full episodes and join the Discord community. As some of you know, I recently got back into the research world, and in particular I work in Eric Yttris' lab at Carnegie Mellon University. Eric's lab studies the relationship between various kinds of behaviors and the neural activity in a few areas known to be involved in enacting and shaping those behaviors, namely the motor cortex and basal ganglia.  And study that, he uses tools like optogentics, neuronal recordings, and stimulations, while mice perform certain tasks, or, in my case, while they freely behave wandering around an enclosed space. We talk about how Eric got here, how and why the motor cortex and basal ganglia are still mysteries despite lots of theories and experimental work, Eric's work on trying to solve those mysteries using both trained tasks and more naturalistic behavior. We talk about the valid question, "What is a behavior?", and lots more. Yttri Lab Twitter: @YttriLab Related papers Opponent and bidirectional control of movement velocity in the basal ganglia. B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors. 0:00 - Intro 2:36 - Eric's background 14:47 - Different animal models 17:59 - ANNs as models for animal brains 24:34 - Main question 25:43 - How circuits produce appropriate behaviors 26:10 - Cerebellum 27:49 - What do motor cortex and basal ganglia do? 49:12 - Neuroethology 1:06:09 - What is a behavior? 1:11:18 - Categorize behavior (B-SOiD) 1:22:01 - Real behavior vs. ANNs 1:33:09 - Best era in neuroscience

    Wed, 06 Mar 2024 - 1h 44min
  • 202 - BI 184 Peter Stratton: Synthesize Neural Principles

    Support the show to get full episodes and join the Discord community. Peter Stratton is a research scientist at Queensland University of Technology. I was pointed toward Pete by a patreon supporter, who sent me a sort of perspective piece Pete wrote that is the main focus of our conversation, although we also talk about some of his work in particular - for example, he works with spiking neural networks, like my last guest, Dan Goodman. What Pete argues for is what he calls a sideways-in approach. So a bottom-up approach is to build things like we find them in the brain, put them together, and voila, we'll get cognition. A top-down approach, the current approach in AI, is to train a system to perform a task, give it some algorithms to run, and fiddle with the architecture and lower level details until you pass your favorite benchmark test. Pete is focused more on the principles of computation brains employ that current AI doesn't. If you're familiar with David Marr, this is akin to his so-called "algorithmic level", but it's between that and the "implementation level", I'd say. Because Pete is focused on the synthesis of different kinds of brain operations - how they intermingle to perform computations and produce emergent properties. So he thinks more like a systems neuroscientist in that respect. Figuring that out is figuring out how to make better AI, Pete says. So we discuss a handful of those principles, all through the lens of how challenging a task it is to synthesize multiple principles into a coherent functioning whole (as opposed to a collection of parts). Buy, hey, evolution did it, so I'm sure we can, too, right? Peter's website. Related papers Convolutionary, Evolutionary, and Revolutionary: What’s Next for Brains, Bodies, and AI? Making a Spiking Net Work: Robust brain-like unsupervised machine learning. Global segregation of cortical activity and metastable dynamics. Unlocking neural complexity with a robotic key 0:00 - Intro 3:50 - AI background, neuroscience principles 8:00 - Overall view of modern AI 14:14 - Moravec's paradox and robotics 20:50 -Understanding movement to understand cognition 30:01 - How close are we to understanding brains/minds? 32:17 - Pete's goal 34:43 - Principles from neuroscience to build AI 42:39 - Levels of abstraction and implementation 49:57 - Mental disorders and robustness 55:58 - Function vs. implementation 1:04:04 - Spiking networks 1:07:57 - The roadmap 1:19:10 - AGI 1:23:48 - The terms AGI and AI 1:26:12 - Consciousness

    Tue, 20 Feb 2024 - 1h 30min
  • 201 - BI 183 Dan Goodman: Neural Reckoning

    Support the show to get full episodes and join the Discord community. You may know my guest as the co-founder of Neuromatch, the excellent online computational neuroscience academy, or as the creator of the Brian spiking neural network simulator, which is freely available. I know him as a spiking neural network practitioner extraordinaire. Dan Goodman runs the Neural Reckoning Group at Imperial College London, where they use spiking neural networks to figure out how biological and artificial brains reckon, or compute. All of the current AI we use to do all the impressive things we do, essentially all of it, is built on artificial neural networks. Notice the word "neural" there. That word is meant to communicate that these artificial networks do stuff the way our brains do stuff. And indeed, if you take a few steps back, spin around 10 times, take a few shots of whiskey, and squint hard enough, there is a passing resemblance. One thing you'll probably still notice, in your drunken stupor, is that, among the thousand ways ANNs differ from brains, is that they don't use action potentials, or spikes. From the perspective of neuroscience, that can seem mighty curious. Because, for decades now, neuroscience has focused on spikes as the things that make our cognition tick. We count them and compare them in different conditions, and generally put a lot of stock in their usefulness in brains. So what does it mean that modern neural networks disregard spiking altogether? Maybe spiking really isn't important to process and transmit information as well as our brains do. Or maybe spiking is one among many ways for intelligent systems to function well. Dan shares some of what he's learned and how he thinks about spiking and SNNs and a host of other topics. Neural Reckoning Group. Twitter: @neuralreckoning. Related papers Neural heterogeneity promotes robust learning. Dynamics of specialization in neural modules under resource constraints. Multimodal units fuse-then-accumulate evidence across channels. Visualizing a joint future of neuroscience and neuromorphic engineering. 0:00 - Intro 3:47 - Why spiking neural networks, and a mathematical background 13:16 - Efficiency 17:36 - Machine learning for neuroscience 19:38 - Why not jump ship from SNNs? 23:35 - Hard and easy tasks 29:20 - How brains and nets learn 32:50 - Exploratory vs. theory-driven science 37:32 - Static vs. dynamic 39:06 - Heterogeneity 46:01 - Unifying principles vs. a hodgepodge 50:37 - Sparsity 58:05 - Specialization and modularity 1:00:51 - Naturalistic experiments 1:03:41 - Projects for SNN research 1:05:09 - The right level of abstraction 1:07:58 - Obstacles to progress 1:12:30 - Levels of explanation 1:14:51 - What has AI taught neuroscience? 1:22:06 - How has neuroscience helped AI?

    Tue, 06 Feb 2024 - 1h 28min
Show More Episodes